

Electron Beam Driven Plasma Wakefield Acceleration (PWFA) – LOI #251

24-SEP-2020

Perspective on the Status of Plasma Wakefield Acceleration Experiments

SLAC

- High gradient acceleration sustained over one meter
 - 43GeV acceleration of tail particles at FFTB in 2007¹
- Beam acceleration with high efficiency & narrow energy spread
 - 9GeV 28pC with 30% efficiency and 4% dE/E at FACET in 2014²
- Positron PWFA: Investigation of various techniques at FACET (2014-16)
 - Non-linear self-loaded (4GeV 200pC 2% dE/E)3
 - Hollow channel⁴
 - Quasi-nonlinear (2GeV 150pC)⁵
- Bright Beam generation
 - Initial studies of Density Downramp, Ionization⁶, Trojan Horse⁷
- Global thermodynamics of multi-GeV plasma accelerators⁸
 - Studies of timescales for plasma response <10µsec

¹ Nature **445**, 741–744 (2007)

² Nature **515**, 92–95 (2014), PPCF **58** 034017 (2016)

³ Nature **524**, 442–445 (2015)

⁴ Nature Communications **7**, 11785 (2016)

⁵ Scientific Reports **7**, 14180 (2017)

⁶ Phys. Rev. Lett. 112, 025001 (2014)

⁷ Nature Physics **15**, 1156–1160 (2019)

⁸ Nature Communications 11, 4753 (2020)

PWFA Experimental Program at FACET-II is Motivated by Roadmap for Future Colliders Based on Advanced Accelerators

Experimental program over next decade will enable well informed decisions on viability of the technology

Electron Beam Plasma Wakefield Acceleration – Next 5 Years

Beam quality

- Preserve emittance of witness bunch at few µm level
 - with high-gradient high-efficiency and depletion of drive beam energy

Injection: plasma based high brightness beam source e.g. (#179)

Demonstrate beams beyond state of the art (photoinjector)

Develop Demonstration Facility

 Experimental program at FACET-II is expected to support developing concepts for facilities with MA beams(#37), 5th generation light source(#97), gamma source(#252)...

Positrons

 Develop concept for positron PWFA compatible with HEP collider application (ion wakes, tailored plasmas...)

PWFA-LC concept will be updated based on HEP input at Snowmass 2021 targeting afterburner and/or discovery collider

Strawman concepts guide future R&D

SLAC

 Assume SLC/NLC/ILC/ CLIC made smart choices that we can start from for main beam and driver

a binary RF spliting scheme.

- Focus on the accelerator module itself (the plasma)
- The plasma is a transformer
- For luminosity Power efficiency and beam quality are critical!

~ 4 km

Concluding Thoughts

SLAC

- Many accelerator beam physics challenges en route to a collider (and even to first applications) – see partial list 'AAC Colliders: PWFA, LWFA & SWFA' M. J. Hogan, HEP GARD ABP Workshop #2, April 2019
- US and International collaborations have proposed many exciting and challenging experiments to address key physics issues on US Roadmap – success will require theory, computation, diagnostic development and facilities to test
- Each 'Advanced Accelerator' technology has prioritized milestones but there are also many common issues:
 - Beam loading and beam shaping for narrow energy spread and high efficiency
 - Emittance preservation at µm and sub-µm levels
 - Knowledge of structure dynamics at long timescales
 - Investigations of paths to positron acceleration comparable to electrons
- Applying lessons learned to update collider designs will take community involvement and motivated/dedicated personnel with time to do so (#46, #216, #168, #88)